当前位置: > s=(1×2×3×…×n)+(4k+3),这里n>=3,1...
题目
s=(1×2×3×…×n)+(4k+3),这里n>=3,1

提问时间:2021-01-09

答案
这个题看似复杂,但如果找到了方法,就不难解决.
若n≥4,则1×2×3×…×n必然是4的倍数.此时s可以写成4m+3的形式,但是,一个完全平方数只可以写成4m或(4m+1)的形式,因此当n≥4时,任何一个k都不能使s写成完全平方数.
因此n=3,此时s=4k+9,则k分别取4、10、18、28、40、54、70、88时,s取25、49、81、121、169、225、289、361.
这就是所有的k的取值.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.