当前位置: > 证明:当n为大于2的整数时,n5-5n3+4n能被120整除....
题目
证明:当n为大于2的整数时,n5-5n3+4n能被120整除.

提问时间:2021-01-08

答案
证明:∵n5-5n3+4n=(n-2)(n-1)n(n+1)(n+2).
∴对一切大于2的正整数n,数n5-5n3+4n都含有公约数1×2×3×4×5=120,
∴当n为大于2的整数时,n5-5n3+4n能被120整除.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.