题目
如图,在直角梯形ABCD中,AB∥CD,AD⊥DC,AB=BC,且AE⊥BC.
(1)求证:AD=AE;
(2)若AD=8,DC=4,求AB的长.
(1)求证:AD=AE;
(2)若AD=8,DC=4,求AB的长.
提问时间:2021-01-08
答案
(1)证明:连接AC,
∵AB∥CD,
∴∠ACD=∠BAC,
∵AB=BC,
∴∠ACB=∠BAC,
∴∠ACD=∠ACB,
∵AD⊥DC,AE⊥BC,
∴∠D=∠AEC=90°,
∵AC=AC,
∴
,
∴△ADC≌△AEC,(AAS)
∴AD=AE;
(2)由(1)知:AD=AE,DC=EC,
设AB=x,则BE=x-4,AE=8,
在Rt△ABE中∠AEB=90°,
由勾股定理得:82+(x-4)2=x2,
解得:x=10,
∴AB=10.
说明:依据此评分标准,其它方法如:过点C作CF⊥AB用来证明和计算均可得分.
∵AB∥CD,
∴∠ACD=∠BAC,
∵AB=BC,
∴∠ACB=∠BAC,
∴∠ACD=∠ACB,
∵AD⊥DC,AE⊥BC,
∴∠D=∠AEC=90°,
∵AC=AC,
∴
|
∴△ADC≌△AEC,(AAS)
∴AD=AE;
(2)由(1)知:AD=AE,DC=EC,
设AB=x,则BE=x-4,AE=8,
在Rt△ABE中∠AEB=90°,
由勾股定理得:82+(x-4)2=x2,
解得:x=10,
∴AB=10.
说明:依据此评分标准,其它方法如:过点C作CF⊥AB用来证明和计算均可得分.
(1)连接AC,证明△ADC与△AEC全等即可;
(2)设AB=x,然后用x表示出BE,利用勾股定理得到有关x的方程,解得即可.
(2)设AB=x,然后用x表示出BE,利用勾股定理得到有关x的方程,解得即可.
直角梯形;全等三角形的判定与性质;勾股定理.
本题考查梯形,矩形、直角三角形的相关知识.解决此类题要懂得用梯形的常用辅助线,把梯形分割为矩形和直角三角形,从而由矩形和直角三角形的性质来求解.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1a比b多3分之1,a占b的-------,b比a小------
- 2请问:为什么物质的体积被压缩后,分子之间的间隔变小,分子之间的斥力大于分子之间的引力?分子之间间隔
- 3纪昌学射于飞卫中的尔什么意思
- 4张、王、李三家合用一个水表,张家有6口人,王家有4口人,李家有2口人,总共付自来水费19.2元,按人口分摊
- 5以其乃华山之阳名之也 是什么句式?
- 6For a moment nothing happened,and then ___came to___all shouting together.为什么
- 7作文一次不平常的经历
- 8英语翻译
- 9把作业落在家里用英语怎么写
- 10已知:点O在三角形ABC的内部,点D.E.F分别在线段OA,OB,OC上,OD:OA=OE:OB=OF:OC.求 三角形ABC相似DEF
热门考点