题目
如图,已知△ABC,∠ACB=90°,AC=BC,点E、F在AB上,∠ECF=45°
(1)求证△ACF∽△BEC
(2)设△ABC的面积为S,求:AF*BF=2S
(3)试判断以线段AE、EF、FB为边的三角形的形状并给出证明
(1)求证△ACF∽△BEC
(2)设△ABC的面积为S,求:AF*BF=2S
(3)试判断以线段AE、EF、FB为边的三角形的形状并给出证明
提问时间:2021-01-08
答案
(1) 由∠ACF=∠ACE+∠ECF=∠ACE+45°、∠BEC=∠ACE+∠A=∠ACE+45°得∠ACF=∠BEC,另有∠A=∠B,证得△ACF∽△BEC.
(2)题目有误,应为AF*BE=2S.
已证△ACF∽△BEC,则AF/AC=BC/BE,得AF*BE=AC*BC=2S.
(3)以线段AE、EF、FB为边的三角形为直角三角形.证明如下:
已知△ABC为直角等腰三角形,则AB²=2AC²,已证AF*BE=AC²,
故:AB²=2AF*BE,
即:(AE+EF+FB)²=2(AE+EF)(EF+FB),
化开:AE²+EF²+FB²+2(AE*EF+AE*FB+EF*FB)=2(AE*EF+AE*FB+EF*FB)+2EF²
得:AE²+FB²=EF²,所以该三线段构成直角三角形.
(2)题目有误,应为AF*BE=2S.
已证△ACF∽△BEC,则AF/AC=BC/BE,得AF*BE=AC*BC=2S.
(3)以线段AE、EF、FB为边的三角形为直角三角形.证明如下:
已知△ABC为直角等腰三角形,则AB²=2AC²,已证AF*BE=AC²,
故:AB²=2AF*BE,
即:(AE+EF+FB)²=2(AE+EF)(EF+FB),
化开:AE²+EF²+FB²+2(AE*EF+AE*FB+EF*FB)=2(AE*EF+AE*FB+EF*FB)+2EF²
得:AE²+FB²=EF²,所以该三线段构成直角三角形.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1do you love me 含义
- 2能长久地保留磁性的磁体叫_磁体,它有_磁体和_磁体两种.
- 31.1.5molCO2的质量是多少?有8.8gCO2中含有多少个CO2分子?
- 4简述我国社会主义公有制的构成
- 5一焦距为f的凸透镜.主轴和水平x轴重合,透镜左侧x轴上有一点光源.点光源到透镜的距离大于f而小于2f,若将此透镜沿x轴向右平移2f的距离,则在此过程中点光源经透镜所成的像将( ) A
- 6在三角形ABC中,向量m=(2cosB,1),向量n=(2cos2(π/4+B/2),-1+sin2B),且满足|m+n|=|m-n|
- 7恰当好处 什么意思
- 8Please give each other a chance to love,这是啥意思啊?
- 9孝文帝改革,这次改革对中原文化产生了怎样的影响
- 10明清时期科举制的“八股文”是哪“八股”?
热门考点