当前位置: > 利用高斯公式求解第二类曲面积分的题目...
题目
利用高斯公式求解第二类曲面积分的题目
被积项是(2xydydz+yzdzdx-z^2dxdy),S是由锥面z=(x^2+y^2)的二分之一次方 与半球面z=(2-x^2-y^2)的二分之一次方 所围成的区域边界曲面的外侧.

提问时间:2021-01-08

答案
由高斯公式:被积项是(2xydydz+yzdzdx-z^2dxdy)=∫∫∫(2y-z)dxdydz=2∫∫∫ydxdydz-∫∫∫zdxdydz=2∫∫∫ydxdydz-∫∫∫zdxdydz (对称性,第1个积分0.第2个积分用截面法)=-∫(0,1)zdz∫∫dxdy-∫(1,√2)zdz∫∫...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.