当前位置: > 如图,在正方形ABCD中,E、F分别在BC、CD上,∠EAF=45°,试证明S△AEF=S△ABE+S△ADF....
题目
如图,在正方形ABCD中,E、F分别在BC、CD上,∠EAF=45°,试证明S△AEF=S△ABE+S△ADF

提问时间:2021-01-08

答案
证明:延长CD到M,使DM=BE,连接AM,∵四边形ABCD是正方形,∴AD=AB,∠B=∠BAD=∠ADC=∠ADM=90°,∵在△ABE和△ADM中,AB=AD∠B=∠ADMBE=DM∴△ABE≌△ADM(SAS),∴AM=AE,S△ABE=S△ADM,∠MAD=∠EAB,∵∠B...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.