题目
如图1,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证:DE+BF=EF.
(1)感悟以下解题方法,并完成填空:
将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合.由旋转可得:AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°∴∠ABG+∠ABF=90°+90°=180°.
因此,点G,B,F在同一条直线上.∵∠EAF=45°∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°∵∠1=∠2∴∠1+∠3=45°,即∠GAF=∠______.
又AG=AE,AF=AF∴△GAF≌______∴______=EF,故DE+BF=EF
(2)方法迁移:如图2,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=
∠DAB,试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.
(1)感悟以下解题方法,并完成填空:
将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合.由旋转可得:AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°∴∠ABG+∠ABF=90°+90°=180°.
因此,点G,B,F在同一条直线上.∵∠EAF=45°∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°∵∠1=∠2∴∠1+∠3=45°,即∠GAF=∠______.
又AG=AE,AF=AF∴△GAF≌______∴______=EF,故DE+BF=EF
(2)方法迁移:如图2,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=
1 |
2 |
提问时间:2021-01-08
答案
(1)将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,
由旋转可得:AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,点G,B,F在同一条直线上,
∵∠EAF=45°,
∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°,
∵∠1=∠2,
∴∠1+∠3=45°,
即∠GAF=∠EAF,
又AG=AE,AF=AF,
∴△GAF≌△EAF(SAS),
∴GF=EF,
故DE+BF=EF;
故答案为:EAF,△EAF,GF;
(2)如图,将△ADE绕点A顺时针旋转90°得到△ABHG,
由旋转可得,AH=AE,BH=DE,∠1=∠2,
∵∠EAF=
∠DAB,
∴∠HAF=∠1+∠3=∠2+∠3=
∠BAD,
∴∠HAF=∠EAF,
∵∠ABH+∠ABF=∠D+∠ABF=90°+90°=180°,
∴点H、B、F三点共线,
在△AEF和△AHF中,
,
∴△AEF≌△AHF(SAS),
∴EF=HF,
∵HF=BH+BF,
∴EF=DE+BF.
由旋转可得:AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,点G,B,F在同一条直线上,
∵∠EAF=45°,
∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°,
∵∠1=∠2,
∴∠1+∠3=45°,
即∠GAF=∠EAF,
又AG=AE,AF=AF,
∴△GAF≌△EAF(SAS),
∴GF=EF,
故DE+BF=EF;
故答案为:EAF,△EAF,GF;
(2)如图,将△ADE绕点A顺时针旋转90°得到△ABHG,
由旋转可得,AH=AE,BH=DE,∠1=∠2,
∵∠EAF=
1 |
2 |
∴∠HAF=∠1+∠3=∠2+∠3=
1 |
2 |
∴∠HAF=∠EAF,
∵∠ABH+∠ABF=∠D+∠ABF=90°+90°=180°,
∴点H、B、F三点共线,
在△AEF和△AHF中,
|
∴△AEF≌△AHF(SAS),
∴EF=HF,
∵HF=BH+BF,
∴EF=DE+BF.
(1)根据图形和推理过程填空即可;
(2)将△ADE绕点A顺时针旋转90°得到△ABHG,根据旋转的性质可得AH=AE,BH=DE,∠1=∠2,再求出∠HAF=∠EAF,再判断出点H、B、F三点共线,然后利用“边角边”证明△AEF和△AHF全等,根据全等三角形对应边相等可得EF=HF,再根据HF=BH+BF等量代换即可得证.
(2)将△ADE绕点A顺时针旋转90°得到△ABHG,根据旋转的性质可得AH=AE,BH=DE,∠1=∠2,再求出∠HAF=∠EAF,再判断出点H、B、F三点共线,然后利用“边角边”证明△AEF和△AHF全等,根据全等三角形对应边相等可得EF=HF,再根据HF=BH+BF等量代换即可得证.
旋转的性质;全等三角形的判定与性质;正方形的性质;翻折变换(折叠问题).
本题考查了旋转的性质,全等三角形的判定与性质,翻折变换的性质,读懂题目信息,理解题目提供的证明思路和方法是解题的关键,也是本题的难点.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1服装店有一批衣服,第一天卖出30%后,又运来120件,这时店里的服装正好比原来少6%,店里原来有服装多少件?
- 2”12345”是什么电话?干什么的?
- 3各组溶液中,两两混合都能发生反应的 B.K2CO3.HNO3.Ca(OH)2 D.NaOH BaCl2 H2SO4
- 4在一张比例尺为1:1000的地图上,1cm2的面积表示的实际面积是
- 5(1)在直角三角形ABC中,角C=90度,a=40,b=9,则c=___.(2)在直角三角形ABC中,角C=90度,c=25,b=15,则a=_...
- 6高一化学混合物的分离和提纯1
- 7一个长方形的面积是80平方分米,如果它的长和宽都是整数,那么它的长和宽可能是多i少
- 8(x^2-1)^n的n阶导数导数是多少?
- 9y=(2m-1)x的m次方的二次方是一个幂函数,则m的值是什么
- 10Well,that would be a first in the history of modern stock ---
热门考点
- 1南昌地区的主导风向是A、东南风 B、东北风 C、西南风 D、西北风
- 2盐酸试剂瓶标签
- 3在北极要用酒精温度计,这是因为酒精:
- 4当k取何值时,y=(k-1)x+(k+1)为一次函数
- 5just、just now、just then 分别用什么时态
- 6以纸船为题,有什么好处?(冰心的诗)
- 7你会用什么语言来表达你与朋友的送别之情?用一句话写出来
- 8旦辞爷娘去,暮宿黄河边...你读到了什么?
- 9某人的血清,分别与四个不同血型的人的红细胞进行血型配合实验,其中有三个人的红细胞发生凝集反应,可判断出该人的血型一定是( ) A.A型 B.B型 C.O型 D.AB型
- 10i went to new york city变成一般疑问句