题目
已知P是F1.F2为焦点的双曲线x^2/a^2- y^2/b^2=1上的一点,向量PF1*PF2=0 tampf1f2=2 求a-b/a=b
已知P是F1.F2为焦点的双曲线x^2/a^2- y^2/b^2=1上的一点,向量PF1*PF2=0 taNpf1f2=2 求a-b/a+b
已知P是F1.F2为焦点的双曲线x^2/a^2- y^2/b^2=1上的一点,向量PF1*PF2=0 taNpf1f2=2 求a-b/a+b
提问时间:2021-01-08
答案
设:向量PF1和向量PF2为θ ,则cosθ=(向量PF1*PF2) / (|PF1| * |PF2|)
∵ 向量PF1*PF2=0
∴cosθ=0
∴θ=90度
∴PF1⊥PF2
tanPF1F2= |PF2|/|PF1| = 2
|PF2| = 2|PF1|
由双曲线的定义可得:|PF2| - |PF1| = 2a
∴|PF2|=4a ,|PF1|=2a
∵PF1⊥PF2
∴(2a)^2 + (4a)^2 = (2c)^2
5a^2 = c^2
∵c^2 = a^2 + b^2
∴b^2 = 4a^2
b=±2a
a-b/a+b = -1/3 或 a-b/a+b = -3
∵ 向量PF1*PF2=0
∴cosθ=0
∴θ=90度
∴PF1⊥PF2
tanPF1F2= |PF2|/|PF1| = 2
|PF2| = 2|PF1|
由双曲线的定义可得:|PF2| - |PF1| = 2a
∴|PF2|=4a ,|PF1|=2a
∵PF1⊥PF2
∴(2a)^2 + (4a)^2 = (2c)^2
5a^2 = c^2
∵c^2 = a^2 + b^2
∴b^2 = 4a^2
b=±2a
a-b/a+b = -1/3 或 a-b/a+b = -3
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1科技创造新生活用英语怎么说
- 2一辆汽车1.5小时行驶了135千米,用同样的速度从A地到B地共用去3.5小时.A地到B地的距离是多少?
- 3半命题作文:生命因------而精彩
- 4-四又三分之一-【-四又三分之一-(-三又三分之二)】等于多少
- 5为什么串联电路电流相等
- 6Life is filled with suffering,But it is also filled with many wonders,like the blue sky
- 7功率等于功乘以速度吗
- 8有甲乙两桶油,甲桶里油比乙桶油多4又二分之一公斤,
- 9五一的见闻感受作文
- 10某项工程,甲乙两队合做30天完成,如果甲、乙两队合做12天后,余下的工程由甲队单独做还要45天才完成.那么这项工程由甲、乙两队单独做,各需要多少天才能完成任务?