题目
设数列{an}的前n项和为Sn,点(n,Sn/n)(n属于N正)均在函数y=3x-2的图象上
设bn=3/AnA(n+1),Tn是数列{bn}的前n项和,
求Tn
设bn=3/AnA(n+1),Tn是数列{bn}的前n项和,
求Tn
提问时间:2021-01-08
答案
∵点(n,Sn/n)(n属于N正)均在函数y=3x-2的图象上
∴Sn/n = 3n-2 ,即:Sn=3n^2 - 2n
则:S(n-1)=3(n-1)^2 - 2(n-1) =3n^2 - 8n + 5
两式相减,得:Sn - S(n-1)=6n-5
即:an=6n-5
则a(n+1)=6(n+1)-5=6n+1
bn=3/AnA(n+1) =3/(6n-5)(6n+1)
=3*(1/6)*[1/(6n-5) - 1/(6n+1)]
=(1/2)*[1/(6n-5) - 1/(6n+1)]
则有b1=(1/2)*(1/1 - 1/7)
b2=(1/2)*(1/7 - 1/13)
…
…
bn=(1/2)*[1/(6n-5)-1/(6n+1)]
∴Tn=b1+b2+b3+.+bn
=(1/2)*{(1/1 - 1/7)+(1/7 - 1/13)+.+[1/(6n-5) - 1/(6n+1)]}
=(1/2)*[1-1/(6n+1)]
=3n/(6n+1)
∴Sn/n = 3n-2 ,即:Sn=3n^2 - 2n
则:S(n-1)=3(n-1)^2 - 2(n-1) =3n^2 - 8n + 5
两式相减,得:Sn - S(n-1)=6n-5
即:an=6n-5
则a(n+1)=6(n+1)-5=6n+1
bn=3/AnA(n+1) =3/(6n-5)(6n+1)
=3*(1/6)*[1/(6n-5) - 1/(6n+1)]
=(1/2)*[1/(6n-5) - 1/(6n+1)]
则有b1=(1/2)*(1/1 - 1/7)
b2=(1/2)*(1/7 - 1/13)
…
…
bn=(1/2)*[1/(6n-5)-1/(6n+1)]
∴Tn=b1+b2+b3+.+bn
=(1/2)*{(1/1 - 1/7)+(1/7 - 1/13)+.+[1/(6n-5) - 1/(6n+1)]}
=(1/2)*[1-1/(6n+1)]
=3n/(6n+1)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点