当前位置: > 加减项的等价无穷小在什么条件下能用等价无穷小替换?...
题目
加减项的等价无穷小在什么条件下能用等价无穷小替换?

提问时间:2021-01-07

答案
加减项中如果每一项都是无穷小,各自用等价无穷小替换以后得到的结果不是0,则是可以替换的.用泰勒公式求极限就是基于这种思想.
举一个例子让你明白:
求当x→0时,(tanx-sinx)/(x^3)的极限.
用洛必塔法则容易求得这个极限为1/2.
我们知道,当x→0时,tanx~x,sinx~x,若用它们代换,结果等于0,显然错了,这是因为x-x=0的缘故;
而当x→0时,tanx~x+(x^3)/3,sinx~x-(x^3)/6,它们也都是等价无穷小�
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.