当前位置: > 设G是一个群,证明:如果G/Z(G)是循环群,则G是交换群...
题目
设G是一个群,证明:如果G/Z(G)是循环群,则G是交换群

提问时间:2021-01-07

答案
显然中心Z(G)是G的一个正规子群,如果G/Z(G)是循环群,且则G/Z(G)=时:
令xH,yH属于,且xH=的s次方,yH=的t次方,则xH=a的s次方*H,yH=a的t次方*H,所以有p属于H和q属于H使得x=a的s次方*p,y=a的t次方*q,由于中心Z(G)满足交换律,所以xy==(a的s次方*p)(a的t次方*q)===(a的t次方*q)(a的s次方*p)=yx,即G是交换群
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.