当前位置: > 求下题中的可微函数 f(x)+2∫(0~x) f(t)dt=x²...
题目
求下题中的可微函数 f(x)+2∫(0~x) f(t)dt=x²

提问时间:2021-01-07

答案
两边对x求导得:f'(x)+2f(x)=2x
即y'+2y=2x
特征方程为r+2=0,得r=-2
y*=ax+b,代入得:a+2ax+2b=2x,对比系数得:2a=2,a+2b=0,解得:a=1,b=-1/2
所以y=Ce^(-2x)+x-1/2
代入原等式:Ce^(-2x)+x-1/2+2[-1/2Ce^(-2x)+x^2/2-1/2x](0,x)=x^2
即 Ce^(-2x)+x-1/2+2[-1/2Ce^(-2x)+x^2/2-1/2x+1/2C]=x^2
化简即得:-1/2+C=0,得C=1/2
所以f(x)=1/2e^(-2x)+x-1/2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.