当前位置: > 关于高数中数列收敛必有界的证明的提问...
题目
关于高数中数列收敛必有界的证明的提问
同济第四版的第40页中证明了此定理,因为数列{Xn}收敛,设limXn=a,根据数列极限的定义,对于ε=1存在着正整数N,使得对于n>N时的一切Xn,不等式|Xn-a|N时,|Xn|=|(Xn-a)+a|≤|Xn-a|+|a|

提问时间:2021-01-07

答案
请注意,当n>N时,|Xn|=|(Xn-a)+a|≤|Xn-a|+|a|N时,而n≤N时,|Xn|≤1+|a|未必成立了
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.