当前位置: > 高数极限:x-->无穷大 limf(x)=(1+1/x)^x=e 似乎不能用指数对数化f(x)的方法证明,请问是哪一步有问题...
题目
高数极限:x-->无穷大 limf(x)=(1+1/x)^x=e 似乎不能用指数对数化f(x)的方法证明,请问是哪一步有问题

提问时间:2021-01-07

答案
这是标准的 1的无穷大次方的形式了可以把 (1+1/x)^x 改写成 xln(1+1/x) 而ln(1+1/x)在x->无穷 时是等价于1/x 这个是等价无穷小替换 这样xln(1+1/x)变成了x*1/x=1 所以 x-->无穷大 limf(x)=(1+1/x)^x=e baoji0725童鞋...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.