当前位置: > f(x)=ax-lnx,是否存在实数a,使f(x)在区间(0,e]的最小值是3 若存在 求a...
题目
f(x)=ax-lnx,是否存在实数a,使f(x)在区间(0,e]的最小值是3 若存在 求a

提问时间:2021-01-07

答案
设存在满足条件的a.
∵f(x)=ax-lnx,∴f′(x)=a-1/x,f″(x)=1/x^2>0.
∵f(x)在定义域范围内有最小值.
令f′(x)=a-1/x=0,得:1/x=a,∴x=1/a,∴f(x)在x=1/a处有最小值.
∴f(1/a)=1-ln(1/a)=3,∴ln(1/a)=-2,∴lna=2,∴a=e^2.
∴存在满足条件的a,且a=e^2.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.