当前位置: > 函数y=cos(wx+φ)和y=tan(wx+φ)图像的性质?...
题目
函数y=cos(wx+φ)和y=tan(wx+φ)图像的性质?
定义域、值域、对称轴等等.

提问时间:2021-01-06

答案
y=cos(ωx+φ),参考y=cosx的图像.
定义域x∈R,值域y∈[-1,1]
当y为最大值或者最小值时,ωx+φ=π/2 +kπ (k=0,±1,±2,±3……)
那么x=(π/2 +kπ -φ)/ω
即对称轴为 x=(π/2 +kπ -φ)/ω (对于余弦函数,在对称轴处取得最大值或者最小值)
y=tan(ωx+φ),参考y=tanx的图像
定义域ωx+φ≠π/2 +kπ (k=0,±1,±2,±3……)
即x≠(π/2 +kπ -φ)/ω (k=0,±1,±2,±3……)
值域y∈R
它没有对称轴,它只关于点中心对称,
当y=0时,那么 ωx+φ=kπ (k=0,±1,±2,±3……)
即:x=(kπ -φ)/ω
那么y=tan(wx+φ)关于点((kπ -φ)/ω,0)中心对称 (对于正切函数,它在中心对称点的值为0)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.