题目
万位为a,千位为b,百位为c,十位为d,个位为e ,的5位数,此数减各位数之和可被9整除吗?
p q t m n代表什么啊
p q t m n代表什么啊
提问时间:2021-01-06
答案
答:
当一个数能被9整除时,它的各位数字之和能被9整除.
设p=10000a+1000b+100c+10d+e+t能被9整除记为9m,则q=a+b+c+d+e+t能被9整除记为9n.
p-q=10000a+1000b+100c+10d=9(m-n)能被9整除,可见与t无关.
所以能被9整除.
同时证明了不止是万位数,一切整数减去它的各位数之和都能被9整除.
p就是那个5位数;
9m=p,其中m是整数,这个说明p能被9整除.
同理q是5位数各位数字之和.n是整数,9n=q也说明q能被9整除.
因为5位数q不一定能被9整除,引入一个整数t使得q+t能被9整除.
当一个数能被9整除时,它的各位数字之和能被9整除.
设p=10000a+1000b+100c+10d+e+t能被9整除记为9m,则q=a+b+c+d+e+t能被9整除记为9n.
p-q=10000a+1000b+100c+10d=9(m-n)能被9整除,可见与t无关.
所以能被9整除.
同时证明了不止是万位数,一切整数减去它的各位数之和都能被9整除.
p就是那个5位数;
9m=p,其中m是整数,这个说明p能被9整除.
同理q是5位数各位数字之和.n是整数,9n=q也说明q能被9整除.
因为5位数q不一定能被9整除,引入一个整数t使得q+t能被9整除.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1椭圆x2/100+y2/64=1,p为椭圆上一点,f1.f2为焦点,角f1pf2=60,求面积
- 2哪个地区用?《离骚》是语文一课中得哪个版版本的
- 3在三角形ABC中,AB=AC,点D在BC上.且AD=BD,DC=AC,求角B的度数
- 4理想变压器的原、副线圈匝数比为22:1,原线圈输入u=220根号2 Sin314t的交变电压时,下列正确的是( )
- 5关于密度与浮力的物理题
- 6ab是一个真分数,如果分子、分母都增加1,则分数是( ) A.不变 B.变大 C.变小 D.无法确定
- 7a∈[0,∏/2] 则当∫(cosx-sinx)dx(上限a,下限O)取最大值时,a=
- 8I hope you___all your problems in the beautiful countryside A.not rememberB.not to remember
- 9这个城市在初夏季节常下雨 他说“我会穿一条红色的长大衣 翻成英文
- 10已知a大于0.a不等于1.命题P:函数y=log a(x+1)在(0,无限正)上单调递减,命题q:曲线y=x平方+(2a-3)x+1与x轴交于不同的两点,若p且q为假命题p或q为真命题,求师数a的取值
热门考点