当前位置: > 如图,在四棱锥P-ABCD中,PD⊥平面ABCD,AD=CD,DB平分∠ADC,E为PC的中点. (Ⅰ)证明:PA∥平面BDE; (Ⅱ)证明:AC⊥平面PBD....
题目
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,AD=CD,DB平分∠ADC,E为PC的中点.

(Ⅰ)证明:PA∥平面BDE;
(Ⅱ)证明:AC⊥平面PBD.

提问时间:2021-01-06

答案
(Ⅰ)证明:设AC∩BD=H,连结EH.在△ADC中,∵AD=CD,且DB平分∠ADC,∴H为AC的中点.又由题设,E为PC的中点,故EH∥PA.又EH⊆平面BDE,且PA⊄平面BDE,∴PA∥平面BDE.…(6分)(Ⅱ)证明:∵PD⊥平面ABCD,AC...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.