当前位置: > 跪求函数1/z^2在点zo=1处的泰勒展开式,...
题目
跪求函数1/z^2在点zo=1处的泰勒展开式,

提问时间:2021-01-06

答案
令f(z)=1/z^2=z^(-2),则f'(z)=-2z^(-3),f"(z)=3!z^(-4),f'''(z)=-4!z^(-5),由此可知f(z)的n阶导数=(-1)^n(n+1)!z^[-(n+2)],所以f(z)在z=1处的泰勒展开式fn(z)=f(1)+∑{(-1)^n(n+1)!1^[-(n+2)]/n!}(z-1)^n+O((z-1)^n),(其中∑下限为1,上限为n),化简即为fn(z)=1+∑(-1)^n(n+1)(z-1)^n+O((z-1)^n)=1-2(z-1)+3(z-1)^2-4(z-1)^3+……+(-1)^n(n+1)(z-1)^n+O((z-1)^n).
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.