题目
已知空间四边形ABCD中AB=BC,CD=DA,M,N,P,Q分别是边AB,BC,CD,DA的中点(如图)求证MNPQ是一个矩形.
提问时间:2021-01-06
答案
证明:连接AC,在△ABC中,
∵AM=MB,CN=NB,∴MN∥AC
在△ADC中,∵AQ=QD,CP=PD,
∴QP∥AC,∴MN∥QP
同理,连接BD可证MQ∥NP
∴MNPQ是平行四边
取AC的中点K,连BK,DK
∵AB=BC,∴BK⊥AC,
∵AD=DC,∴DK⊥AC.
因此平面BKD与AC垂直
∵BD在平面BKD内,∴BD⊥AC
∵MQ∥BD,QP∥AC,∴MQ⊥QP,即∠MQP为直角
故MNPQ是矩形.
∵AM=MB,CN=NB,∴MN∥AC
在△ADC中,∵AQ=QD,CP=PD,
∴QP∥AC,∴MN∥QP
同理,连接BD可证MQ∥NP
∴MNPQ是平行四边
取AC的中点K,连BK,DK
∵AB=BC,∴BK⊥AC,
∵AD=DC,∴DK⊥AC.
因此平面BKD与AC垂直
∵BD在平面BKD内,∴BD⊥AC
∵MQ∥BD,QP∥AC,∴MQ⊥QP,即∠MQP为直角
故MNPQ是矩形.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1英语翻译
- 2以Nature为题写一篇英语文章
- 3It is ten forty(改同义句) i like elephants (very much)(对括号内提问
- 4如图,已知:Rt△ABC中,∠C=90°,AC=BC=2,将一块三角尺的直角顶点与斜边AB的中点M重合,当三角尺绕着点M旋转时,两直角边始终保持分别与边BC、AC交于D、E两点(D、E不与B、A重合)
- 5He did nothing but do homework at home last night.为什么是do
- 6对《最后一课》中“这些字帖挂在我们课桌的铁杆上,就像许多面小国旗在教室里飘扬"这句话的含义
- 7( ) Andy wants to be ______university student when he grows up.A.a B.an C.the
- 8若函数y=x3-3bx+3b在(0,1)内有极小值,则
- 9响度的单位为什么叫分贝
- 10常见的体育运动项目用英语怎么说啊
热门考点