当前位置: > 已知数列{An}满足A1=1.A2=3,3/2An+1是An+2与2An的等差中项...
题目
已知数列{An}满足A1=1.A2=3,3/2An+1是An+2与2An的等差中项
(1)证明:数列{A(n+1)-An}是等比数列
(2)求数列{An}的通项公式
(3)若数列4^[(b1)-1]*4^[(b2)-1]…*4^[(bn)-1]=(An+1)^bn
证明:数列{An}是等差数列.

提问时间:2021-01-05

答案
3/2An+1是An+2与2An
3An+1=An+2+2An
An+2-An+1=2(An+1-An)
所以数列{A(n+1)-An}是等比数列
An+2-An+1=2(An+1-An)
An+1-An=2(An-An-1)
.
.
A3-A2=2(A2-A1)
相加
An+2-A2=2(An+1-A1)
An+2=2An+1+1
An=2An-1+1=2((2(An-2+1)+1=4An-2+1+2
=...=2^n-1
4^[(b1)-1]*4^[(b2)-1]…*4^[(bn)-1]=4^(b1+b2+...bn-n)=(2^n-1+1)^bn=(2^n)bn
取对数
(b1+b2+...bn-n)Lg4=bnLg2^n=1/2*n*bnLg4
2(b1+b2+...bn-n)=n*bn
bn=2/n(b1+b2+...bn)-2.等式1
b1=2
b2=3
b3=4
b4=5
.
bn=n+1
所以为等差数列
也可以用反推法,假设bn为等差数列,可以得出2(b1+b2+...bn-n)=n*bn
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.