题目
如图,四边形ABCD为平行四边形,AD=2,BE∥AC,DE交AC的延长线于F点,交BE于E点.
(1)求证:EF=DF;
(2)若AC=2CF,∠ADC=60°,AC⊥DC,求DE的长.
(1)求证:EF=DF;
(2)若AC=2CF,∠ADC=60°,AC⊥DC,求DE的长.
提问时间:2021-01-05
答案
(1)证明:过点E作EG∥CD交AF的延长线于点G,
则∠GEF=∠CDF,∠G=∠DCF,
在平行四边形ABCD中,
AB∥CD,AB=CD,
∴EG∥AB.
∵BE∥AC,
∴四边形ABEG是平行四边形.
∴EG=AB=CD.
∴△EGF≌△DCF(ASA).
∴EF=DF.
(2)∵∠ADC=60°,AC⊥DC,
∴∠CAD=30°.
∵AD=2,
∴CD=1,
∴AC=
则∠GEF=∠CDF,∠G=∠DCF,
在平行四边形ABCD中,
AB∥CD,AB=CD,
∴EG∥AB.
∵BE∥AC,
∴四边形ABEG是平行四边形.
∴EG=AB=CD.
∴△EGF≌△DCF(ASA).
∴EF=DF.
(2)∵∠ADC=60°,AC⊥DC,
∴∠CAD=30°.
∵AD=2,
∴CD=1,
∴AC=