当前位置: > 在正方体ABCD-A’B’C’D’中,P、Q分别为A’B’,BB’的中点.求直线AP与CQ所成的角的大小...
题目
在正方体ABCD-A’B’C’D’中,P、Q分别为A’B’,BB’的中点.求直线AP与CQ所成的角的大小
设正方体棱长为2
取AB中点M,CC'中点N,连接B'M,B'N
则:角MB'N就是直线AP与CQ所成的角
B'M=B'N=√5,MN=√6
由余弦定理得:
cos(MB'N)=2/5
角MB'N=arccos(2/5)
请问上述步骤中的MN=√6是怎么得出的!
另外还有一题:
在正方体ABCD-A1B1C1D1中,AC与DB交于点O,B1O与AA1是不是异面直线?

提问时间:2021-01-05

答案
连MC,因为MB=1,BC=2所以MC=√5;CN=1,所以MN=√6
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.