当前位置: > 证明 p 是能整除(p-1)!+1的最小质数...
题目
证明 p 是能整除(p-1)!+1的最小质数
重点是 最小
是阶乘啊...

提问时间:2021-01-05

答案
p 是能整除(p-1)!+1的最小质数
证:
由wilson定理,p|((p-1)!+1),即(p-1)!==-1 mod p
对于任意整数n
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.