当前位置: > 是否存在常数A,B使等式:1(N^2-1^2)+2(N^2-2^2)+3(N^2-3^2)+……+N(N^2-N^2)=[N^2(N+A)(N+B)]/4对一切N属于N*都成立,求证明....
题目
是否存在常数A,B使等式:1(N^2-1^2)+2(N^2-2^2)+3(N^2-3^2)+……+N(N^2-N^2)=[N^2(N+A)(N+B)]/4对一切N属于N*都成立,求证明.

提问时间:2021-01-04

答案
等式展开得
1n^2+2n^2+...nn^2-(1^3+2^3+3^3+...+n^3)=n^2*n(n+1)/2-n^2(n+1)/4=n^2(n^2-1)/4=n^2(n+a)(n+b)/4
所以有n^2-1=n^2+(a+b)n+ab 等式两边比较系数 有 a+b=0,ab=-1 解得a=1,b=-1 或
a=-1,b=1
公式:1^3+2^3+3^3+...+n^3=n^2(n+1)/4
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.