当前位置: > 设有2n×2n个正方形方格棋盘,在其中任意的3n个方格中各有一枚棋子.求证:可以选出n行和n列,使得3n枚棋子都在这n行和n列中....
题目
设有2n×2n个正方形方格棋盘,在其中任意的3n个方格中各有一枚棋子.求证:可以选出n行和n列,使得3n枚棋子都在这n行和n列中.

提问时间:2021-01-04

答案
证明:设各行的棋子数分别P1,P2,Pn,Pn+1,P2n.且P1≥P2≥Pn≥Pn+1≥P2n
由题设P1+P2+Pn+Pn+1+P2n=3n,①
选取含棋子数为P1,P2,Pn,的这n行,则P1+P2+Pn≥2n,
否则,若P1+P2+Pn≤2n-1,②
则P1,P2,Pn中至少有一个不大于1,
由①,②得Pn+1+P2n≥n+1,
从而Pn+1P2n中至少有一个大于1,这与所设矛盾.
选出的这n行已含有不少于2n枚棋子,再选出n列使其包含其余的棋子(不多于n枚),
这样选取的n行和n列包含了全部3n枚棋子.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.