题目
如图,分别以Rt△ABC的直角边AC,BC为边,在Rt△ABC外作两个等边三角形△ACE和△BCF,连接BE,AF.
求证:BE=AF.
求证:BE=AF.
提问时间:2021-01-04
答案
证明:∵△ACE和△BCF是等边三角形,
∴∠ACE=∠FCB=60°,CE=AC,CF=CB,
∴∠ACF=∠ECB=60°+∠ACB.
在△CEB与△CAF中,
,
∴△CEB≌△CAF(SAS),
∴BE=AF.
∴∠ACE=∠FCB=60°,CE=AC,CF=CB,
∴∠ACF=∠ECB=60°+∠ACB.
在△CEB与△CAF中,
|
∴△CEB≌△CAF(SAS),
∴BE=AF.
利用等边三角形的性质得到相等的边和角,CE=AC,CF=CB,∠ACF=∠ECB=90°+60°=150°,从而判定△CEB≌△ACF得到BE=AF.
全等三角形的判定与性质;等边三角形的性质.
本题考查三角形全等的判定和等边三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点