题目
要提的问题短一点,解答必须要有,要不一分不给
提问时间:2021-01-04
答案
.一块长1米20厘米,宽90厘米的铝皮,剪成直径30厘米的圆片,最多可以剪几块?
分析:此题不需求面积的.只需求长和宽各是圆的直径的几倍,然后求出长和宽的倍数的积.
1米20厘米=120厘米
120÷30=4 90÷30=3
4×3=12(块)
答:最多可以剪12块.
2.一个圆柱,底面半径1分米,它的侧面展开是一个正方形.这个圆柱的表面积和体积是多少?
分析:从侧面展开图正方形入手,可知这个圆柱的高是圆柱的底面周长.
圆柱的表面积:
(3.14×1×2)×(3.14×1×2)+3.14×1×1×2
=6.28×6.28+6.28
=6.28×7.28
=45.7184(平方分米)
圆柱的体积:
3.14×1×1×(3.14×1×2)
=3.14×6.28
=19.7192(平方分米)
答:这个圆柱的表面积是45.7184平方分米,体积是19.7192平方分米.
3.一列火车上午8时从甲站开出,到第二天的晚上9时到达乙站.已知火车平均每小时行98千米.甲乙两站间的铁路长多少千米?
分析:这题的解题关键是要知道火车行驶的时间.
24-8+9=25(小时)[或者:12-8+12+9=25(小时)]
98×25=(100-2)×25
=2500-50
=2450(千米)
答:甲乙两站间的铁路长2450千米.
4.一个圆和一个扇形的半径相等.已知圆的面积是30平方厘米,扇形的圆心角是72度.求扇形的面积.
分析:因为圆和扇形的半径相等,圆和扇形的面积存要在倍数关系.这个倍数就是它们圆心角之间的倍数关系.
72÷360=1/5,30×1/5=6(平方厘米)
答:扇形的面积是6平方厘米.
4.一个半径3厘米的圆,在圆中画一个扇形,使它的面积占圆面积的20%,并且算出这个扇形的面积.
分析:此题与上题的思路一样.
3.14×3×3×20%=5.652(平方厘米)
答:这个扇形的面积是5.652平方厘米.
5.学校把植树任务按5:3分给六年级和五年级.六年级实际栽了108棵,超过原分配任务的20%.原计划五年级栽树多少棵?
分析:六年级原计划栽树的棵数是解题的关键.
1、六年级原计划栽树多少棵?
108÷(1+20%)=108×5/6=90(棵)
2、原计划五年级栽树多少棵?
90÷5×3=54(棵)
综合算式:
108÷(1+20%)÷5×3
=90÷5×3
=54(棵)
答:原计划五年级栽树54棵.
6.甲乙两面个工程队全修一段公路,甲队的工作效率是乙队的3/5.两队合修6天正好完成这段公路的2/3,余下的由乙队单独修,还要几天才能修完?
分析:求两队的工效是解题的关键.
1、两队的工效和是多少?
2/3÷6=1/9
2、乙队的工效是多少?
1/9×[5÷(3+5)]
=1/9×5/8
=5/72
3、还要几天才能修完?
(1-2/3)÷5/72
=1/3×72/5
=24/5(天)
答:还要24/5天才能修完.
7.某水泥厂去年生产水泥232400吨,今年头5个月的产量就等于去年全年的产量.照这样计算,这个水泥厂今年将比去年增产百分之几?
解法一:分析,今年后7个月的产量就是增产的,因此我们要先求出后7个月生产量.
232400÷5×(12-5)
=46480×7
=325360(吨)
325360÷232400=1、4=140%
解法二:把232400吨看作单位“1”,
1、今年平均每月生产量是去年的几分之几?
1÷5=1/5
2、今年比去年增产几分之几?
1/5×(12-5)=7/5
3、今年比去年增产百分之几?
7/5=1.4=140%
综合算式:1÷5×(12-5)=1.4=140%
答:这个厂今年比去年增产140%.
8.幼儿园买进大小两种毛巾各40条,共用258.8元.大毛巾的单价比小毛巾单价的2倍多0.11元.这两种毛巾单价各是多少元?
设小毛巾的单价是x元,则大毛巾的单价是(2x+0.11)元.
[x+(2x+0.11)]×40=258.8
3x=6.47-0.11
x=6.36÷3
x=2.12
2x+0.11=2.12×2+0.11
=4.35
答:大毛巾的单价是每条4.35元,小毛巾的单价是每条2.12元.
9. 一间长4、8米、宽3、6米的房间,用边长0、15米的正方形瓷砖铺地面,需要768块.在长6米、宽4、8米的房间里,如果用同样的瓷砖来铺,需要多少块?如果在第一个房间改铺边长0、2米的正方形瓷砖,要用多少块?(用比例解)
分析:房间的面积是一定的,每块砖的面积和块数成反比例.
设需要x块.
0.15×0.15x =6×4.8
x =6×4.8÷0.15÷0.15
x =1280
答:需要1280块.
设需要y块.
0.2×0.2y=4.8×3.6
y=4.8×3.6÷0.2÷0.2
y=432
答:需要432块.
10.一艘轮船所带的柴油最多可以用6小时.驶出时顺风,每小时行驶30千米.驶回时逆风,每小时行驶的路程是顺风时的4/5.这艘轮船最多驶出多远应往回驶?
分析:轮船行驶的路程一定,每小时行驶的路程和时间成反比例.
设这艘轮船逆风行驶了x小时.
30×4/5x=30×(6-x)
4/5x=6-x
9/5x=6
x=10/3
30×4/5×10/3=80(千米)
答:这艘轮船最多驶出80千米就应往回驶.
11. 一辆汽车从甲地开往乙地,第一小时行了全程的1/7,第二小时比第一小时多行了16千米,这时距离乙地还有94千米.甲乙两地的公路长多少千米?
分析:“从第二小时比第一小时多行了16千米”可知第二小时行了全程的1/7和16千米.第一小时和第二小时共行全程的(1/7+1/7)和16千米.由此可知(96+16)占全程的(1-1/7-1/7).
根据上面的分析得:
(96+16)÷(1-1/7-1/7)
=112÷5/7
=112×7/5
=156、8(千米)
答:甲乙两地的公路长156、8千米.
或者用方程
设甲乙两地的公路长x千米.
(1-1/7-1/7)x=96+16
5/7x=112
x=156、8
答:甲乙两地的公路长156、8千米.
题目改编:若这题中的一个条件改成“这时距离甲地96千米”,其它条件不变,问题也不变.如何解答?
12.一个编织组,原来30人10天生产1500只花篮.现在增加到80人,按原来的工效,生产6000只花篮需要多少天?(用比例解答)
分析:题中说“按原来的工效”,这说明这个纺织组的工作效率是一定的.工作效率一定,工作总量和工作时间成正比例.
设需要x天.
1500:(30×50)=6000:(80×x)
1500×(80×x)=6000×(30×50)
x=6000×30×50÷80÷1500
x=6000÷80
x=75
答:需要75天.
13
今年是05年,父母亲年龄和是70岁,姐弟俩的年龄和是16岁,到08年时,父亲的年龄是弟弟年龄的4倍,母亲的年龄是姐姐的3倍,那么当父亲的年龄是姐姐年龄的2倍时,是哪年? 答案:设弟弟的年龄为x岁
∵05年 父+母=70 姐+弟=16
∴08年 父+母=76 姐+弟=22
四人年龄和为76+22=98(岁)
∵08年时,父亲的年龄是弟弟年龄的4倍,母亲的年龄是姐姐的3倍
∴父亲年龄为4x,姐姐年龄为22-x,母亲年龄为3(22-x)
x+4x+(22-x)+3(22-x)=98
x=10----弟弟年龄
姐姐:22-10=12(岁)
父亲:10×4=40(岁)
姐姐、父亲年龄差为:40-12=28(岁)
28÷(2-1)=28(岁)---父亲年龄是姐姐2倍时姐姐的年龄
08年姐姐12岁,28岁时是2024年
当父亲的年龄是姐姐年龄的2倍时,是2024年.
14.一块草地,供24匹马吃6天;20匹马吃10天.多少马12天吃尽?
可、假设草地单位为“1”,所以24*6=144 20*10=200 (200-144)/4=14 因此每天草地长草14个单位“1” 200-14*10=60,因此草地原有草60个单位"1".
60/12+14=19 19马12天吃尽
供24匹马吃6天;20匹马吃10天.多少马12天吃尽?
15.一块草地,可供5只羊吃40天;6只羊吃30天.如果4只羊吃30天后又增加2只羊一起吃,那么这块草地还可以再吃多少天?
、同理,40*5=200 30*6=180 (200-180)/(40-30)=2[每天草地长草] 200-2*40=120[原有草] 120-(4-2)*30=60 60/(6-2)=15(天)
16.、每小时有3000人到书店买书.如果设一个售书口,每分钟可以让50人买完离开;如果设2个售书口,1小时后就没有人排队了.那么如果设4个口,多长时间后就没有人排队了?
30分钟 {每分钟有100人来,3000/(200-100)}
17.一口井,用3部抽水机40分钟可以抽干;6部抽水机16分钟可以抽干.那么5部同样的抽水机,多少分钟可以抽干?
20分钟 {3*40-6*16=24 24/24=1 120-40*1=80 80/4=20}
18.一个水池,池内除原有的水外,每天都流入同样多的水.如果用池中的水每天浇50亩地,10天用完;如果每天浇45亩地,20天用完.那么,用这些水浇多少亩地,正好可用25天?
44亩地{45*20-50*10=400 400/10=40 500-40*10=100 100/25+40=44}
19.甲、乙、丙、丁四人加工同样的零件,甲先加工了一段时间,然后乙、丙、丁三人一起参加加工,6小时后乙和甲加工的一样多;9小时后丙和甲加工的一样多,12小时后丁和甲加工的一样多.又知乙每小时加工27个零件,丙每小时加工23个零件.那么,丁每小时加工零件多少个?
21个 {9*23-6*27=45 45/3=15 162-15*6=72 72/12+15=21}
20.笼中装有鸡和兔若干只,共100只脚,若将鸡换成兔,兔换成鸡,则共92只脚.笼中原有兔、鸡各多少只?
兔换成鸡,每只就减少了2只脚.
(100-92)/2=4只,
兔子有4只.
(100-4*4)/2=42只
答:兔子有4只,鸡有42只.
21.15年前父亲的年龄是儿子的7倍,十年后,父亲年龄是儿子的2倍
.父亲.儿子各多少岁.
差倍问题
儿子原来:(15+10)/(7-1-1)=5(岁)
儿子今年:5+15=20(岁)
父亲原来:5×7=35(岁)
父亲今年:35+15=50(岁)
22.小明和小芳围绕着一个池塘跑步,两人从同一点出发,同向而行.小明:280米/分;小芳:220/分.8分后,小明追上小芳.这个池塘的一周有多少米?
280*8-220*8=480
23.现有两列火车同时同方向齐头行进,行12秒后快车超过慢车.快车每秒行18米,慢车每秒行10米.如果这两列火车车尾相齐同时同方向行进,则9秒后快车超过慢车,求两列火车的车身长.
快车长:18×12-10×12=96(米)
慢车长:18×9-10×9=72(米)
24.一列火车通过440米的桥需要40秒,以同样的速度穿过310米的隧道需要30秒.这列火车的速度和车身长各是多少?
(1)火车的速度是:(440-310)÷(40-30)=13(米/秒)
(2)车身长是:13×30-310=80(米)
25.小英和小敏为了测量飞驶而过的火车速度和车身长,他们拿了两块跑表.小英用一块表记下了火车从她面前通过所花的时间是15秒;小敏用另一块表记下了从车头过第一根电线杆到车尾过第二根电线杆所花的时间是20秒.已知两电线杆之间的距离是100米.你能帮助小英和小敏算出火车的全长和时速吗?
(1)火车的时速是:100÷(20-15)×60×60=72000(米/小时)
(2)车身长是:20×15=300(米)
26.一人以每分钟120米的速度沿铁路边跑步.一列长288米的火车从对面开来,从他身边通过用了8秒钟,求列车的速度.
288÷8-120÷60=36-2=34(米/秒)
27.
小明上午8时骑自行车以每小时12千米的速度从A地到B地,小强上午8时40分骑自行车以每小时16千米的速度从B地到A地,两人在A、B两地的中点处相遇,A、B两地间的路程是多少千米?
两人在两地间的路程的中点相遇,但小明比小强多行了40分钟,如果两人同时出发,相遇时,小明行的路程就比小强少12÷60×40=8(千米),就是当小强出发时,小明已经行了8千米,从8时40分起两人到两人相遇,由于小明每小时比小强少行16-12=4(千米),说明两人相遇时间是8÷4=2(小时),那么,A、B两地间的路程是8+(12+16)×2=64(千米).
28.甲、乙两村相距3550米,小伟从甲村步行往乙村,出发5分钟后,小强骑自行车从乙村前往甲村,经过10分钟遇见小伟.小强骑车每分钟行的比小伟步行每分钟多160米,小伟每分钟走多少米?
如果小强每分钟少行160米,他行的速度就和小伟步行的速度相同,这样小强10分钟就少行了160×10=1600(米),小伟(5+10)分钟和小强10分钟一共行走的路程是3550-1600=1950(米),那么小伟每分钟走的路是1950÷(5+10+10)=78(米).
29.客车从东城和货车从西城同时开出,相向而行,客车每小时行44千米,货车每小时行36千米,客车到西城比货车到东城早2小时.两车开出后多少小时在途中相遇?
当客车到西城时,货车离东城还有2×36=72(千米),而货车每小时行的比客车少44-36=8(千米),客车行东西城间的路程用的时间是72÷8=9(小时),因此东西城相距44×9=396(千米),两车从出发到相遇用的时间是;396÷(44+36)=4.95(小时)
30.小红和小强同时从家里出发相向而行.小红每分走52米,小强每分走70米,二人在途中的A处相遇.若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在A处相遇.小红和小强两人的家相距多少米?
因为小红的速度不变,相遇地点不变,所以小红两次从出发到相遇的时间相同.也就是说,小强第二次比第一次少走4分.由
(70×4)÷(90-70)=14(分)
可知,小强第二次走了14分,推知第一次走了18分,两人的家相距
(52+70)×18=2196(米).
我花了30分钟呢,你是给孩子找的吧,祝你成功!
分析:此题不需求面积的.只需求长和宽各是圆的直径的几倍,然后求出长和宽的倍数的积.
1米20厘米=120厘米
120÷30=4 90÷30=3
4×3=12(块)
答:最多可以剪12块.
2.一个圆柱,底面半径1分米,它的侧面展开是一个正方形.这个圆柱的表面积和体积是多少?
分析:从侧面展开图正方形入手,可知这个圆柱的高是圆柱的底面周长.
圆柱的表面积:
(3.14×1×2)×(3.14×1×2)+3.14×1×1×2
=6.28×6.28+6.28
=6.28×7.28
=45.7184(平方分米)
圆柱的体积:
3.14×1×1×(3.14×1×2)
=3.14×6.28
=19.7192(平方分米)
答:这个圆柱的表面积是45.7184平方分米,体积是19.7192平方分米.
3.一列火车上午8时从甲站开出,到第二天的晚上9时到达乙站.已知火车平均每小时行98千米.甲乙两站间的铁路长多少千米?
分析:这题的解题关键是要知道火车行驶的时间.
24-8+9=25(小时)[或者:12-8+12+9=25(小时)]
98×25=(100-2)×25
=2500-50
=2450(千米)
答:甲乙两站间的铁路长2450千米.
4.一个圆和一个扇形的半径相等.已知圆的面积是30平方厘米,扇形的圆心角是72度.求扇形的面积.
分析:因为圆和扇形的半径相等,圆和扇形的面积存要在倍数关系.这个倍数就是它们圆心角之间的倍数关系.
72÷360=1/5,30×1/5=6(平方厘米)
答:扇形的面积是6平方厘米.
4.一个半径3厘米的圆,在圆中画一个扇形,使它的面积占圆面积的20%,并且算出这个扇形的面积.
分析:此题与上题的思路一样.
3.14×3×3×20%=5.652(平方厘米)
答:这个扇形的面积是5.652平方厘米.
5.学校把植树任务按5:3分给六年级和五年级.六年级实际栽了108棵,超过原分配任务的20%.原计划五年级栽树多少棵?
分析:六年级原计划栽树的棵数是解题的关键.
1、六年级原计划栽树多少棵?
108÷(1+20%)=108×5/6=90(棵)
2、原计划五年级栽树多少棵?
90÷5×3=54(棵)
综合算式:
108÷(1+20%)÷5×3
=90÷5×3
=54(棵)
答:原计划五年级栽树54棵.
6.甲乙两面个工程队全修一段公路,甲队的工作效率是乙队的3/5.两队合修6天正好完成这段公路的2/3,余下的由乙队单独修,还要几天才能修完?
分析:求两队的工效是解题的关键.
1、两队的工效和是多少?
2/3÷6=1/9
2、乙队的工效是多少?
1/9×[5÷(3+5)]
=1/9×5/8
=5/72
3、还要几天才能修完?
(1-2/3)÷5/72
=1/3×72/5
=24/5(天)
答:还要24/5天才能修完.
7.某水泥厂去年生产水泥232400吨,今年头5个月的产量就等于去年全年的产量.照这样计算,这个水泥厂今年将比去年增产百分之几?
解法一:分析,今年后7个月的产量就是增产的,因此我们要先求出后7个月生产量.
232400÷5×(12-5)
=46480×7
=325360(吨)
325360÷232400=1、4=140%
解法二:把232400吨看作单位“1”,
1、今年平均每月生产量是去年的几分之几?
1÷5=1/5
2、今年比去年增产几分之几?
1/5×(12-5)=7/5
3、今年比去年增产百分之几?
7/5=1.4=140%
综合算式:1÷5×(12-5)=1.4=140%
答:这个厂今年比去年增产140%.
8.幼儿园买进大小两种毛巾各40条,共用258.8元.大毛巾的单价比小毛巾单价的2倍多0.11元.这两种毛巾单价各是多少元?
设小毛巾的单价是x元,则大毛巾的单价是(2x+0.11)元.
[x+(2x+0.11)]×40=258.8
3x=6.47-0.11
x=6.36÷3
x=2.12
2x+0.11=2.12×2+0.11
=4.35
答:大毛巾的单价是每条4.35元,小毛巾的单价是每条2.12元.
9. 一间长4、8米、宽3、6米的房间,用边长0、15米的正方形瓷砖铺地面,需要768块.在长6米、宽4、8米的房间里,如果用同样的瓷砖来铺,需要多少块?如果在第一个房间改铺边长0、2米的正方形瓷砖,要用多少块?(用比例解)
分析:房间的面积是一定的,每块砖的面积和块数成反比例.
设需要x块.
0.15×0.15x =6×4.8
x =6×4.8÷0.15÷0.15
x =1280
答:需要1280块.
设需要y块.
0.2×0.2y=4.8×3.6
y=4.8×3.6÷0.2÷0.2
y=432
答:需要432块.
10.一艘轮船所带的柴油最多可以用6小时.驶出时顺风,每小时行驶30千米.驶回时逆风,每小时行驶的路程是顺风时的4/5.这艘轮船最多驶出多远应往回驶?
分析:轮船行驶的路程一定,每小时行驶的路程和时间成反比例.
设这艘轮船逆风行驶了x小时.
30×4/5x=30×(6-x)
4/5x=6-x
9/5x=6
x=10/3
30×4/5×10/3=80(千米)
答:这艘轮船最多驶出80千米就应往回驶.
11. 一辆汽车从甲地开往乙地,第一小时行了全程的1/7,第二小时比第一小时多行了16千米,这时距离乙地还有94千米.甲乙两地的公路长多少千米?
分析:“从第二小时比第一小时多行了16千米”可知第二小时行了全程的1/7和16千米.第一小时和第二小时共行全程的(1/7+1/7)和16千米.由此可知(96+16)占全程的(1-1/7-1/7).
根据上面的分析得:
(96+16)÷(1-1/7-1/7)
=112÷5/7
=112×7/5
=156、8(千米)
答:甲乙两地的公路长156、8千米.
或者用方程
设甲乙两地的公路长x千米.
(1-1/7-1/7)x=96+16
5/7x=112
x=156、8
答:甲乙两地的公路长156、8千米.
题目改编:若这题中的一个条件改成“这时距离甲地96千米”,其它条件不变,问题也不变.如何解答?
12.一个编织组,原来30人10天生产1500只花篮.现在增加到80人,按原来的工效,生产6000只花篮需要多少天?(用比例解答)
分析:题中说“按原来的工效”,这说明这个纺织组的工作效率是一定的.工作效率一定,工作总量和工作时间成正比例.
设需要x天.
1500:(30×50)=6000:(80×x)
1500×(80×x)=6000×(30×50)
x=6000×30×50÷80÷1500
x=6000÷80
x=75
答:需要75天.
13
今年是05年,父母亲年龄和是70岁,姐弟俩的年龄和是16岁,到08年时,父亲的年龄是弟弟年龄的4倍,母亲的年龄是姐姐的3倍,那么当父亲的年龄是姐姐年龄的2倍时,是哪年? 答案:设弟弟的年龄为x岁
∵05年 父+母=70 姐+弟=16
∴08年 父+母=76 姐+弟=22
四人年龄和为76+22=98(岁)
∵08年时,父亲的年龄是弟弟年龄的4倍,母亲的年龄是姐姐的3倍
∴父亲年龄为4x,姐姐年龄为22-x,母亲年龄为3(22-x)
x+4x+(22-x)+3(22-x)=98
x=10----弟弟年龄
姐姐:22-10=12(岁)
父亲:10×4=40(岁)
姐姐、父亲年龄差为:40-12=28(岁)
28÷(2-1)=28(岁)---父亲年龄是姐姐2倍时姐姐的年龄
08年姐姐12岁,28岁时是2024年
当父亲的年龄是姐姐年龄的2倍时,是2024年.
14.一块草地,供24匹马吃6天;20匹马吃10天.多少马12天吃尽?
可、假设草地单位为“1”,所以24*6=144 20*10=200 (200-144)/4=14 因此每天草地长草14个单位“1” 200-14*10=60,因此草地原有草60个单位"1".
60/12+14=19 19马12天吃尽
供24匹马吃6天;20匹马吃10天.多少马12天吃尽?
15.一块草地,可供5只羊吃40天;6只羊吃30天.如果4只羊吃30天后又增加2只羊一起吃,那么这块草地还可以再吃多少天?
、同理,40*5=200 30*6=180 (200-180)/(40-30)=2[每天草地长草] 200-2*40=120[原有草] 120-(4-2)*30=60 60/(6-2)=15(天)
16.、每小时有3000人到书店买书.如果设一个售书口,每分钟可以让50人买完离开;如果设2个售书口,1小时后就没有人排队了.那么如果设4个口,多长时间后就没有人排队了?
30分钟 {每分钟有100人来,3000/(200-100)}
17.一口井,用3部抽水机40分钟可以抽干;6部抽水机16分钟可以抽干.那么5部同样的抽水机,多少分钟可以抽干?
20分钟 {3*40-6*16=24 24/24=1 120-40*1=80 80/4=20}
18.一个水池,池内除原有的水外,每天都流入同样多的水.如果用池中的水每天浇50亩地,10天用完;如果每天浇45亩地,20天用完.那么,用这些水浇多少亩地,正好可用25天?
44亩地{45*20-50*10=400 400/10=40 500-40*10=100 100/25+40=44}
19.甲、乙、丙、丁四人加工同样的零件,甲先加工了一段时间,然后乙、丙、丁三人一起参加加工,6小时后乙和甲加工的一样多;9小时后丙和甲加工的一样多,12小时后丁和甲加工的一样多.又知乙每小时加工27个零件,丙每小时加工23个零件.那么,丁每小时加工零件多少个?
21个 {9*23-6*27=45 45/3=15 162-15*6=72 72/12+15=21}
20.笼中装有鸡和兔若干只,共100只脚,若将鸡换成兔,兔换成鸡,则共92只脚.笼中原有兔、鸡各多少只?
兔换成鸡,每只就减少了2只脚.
(100-92)/2=4只,
兔子有4只.
(100-4*4)/2=42只
答:兔子有4只,鸡有42只.
21.15年前父亲的年龄是儿子的7倍,十年后,父亲年龄是儿子的2倍
.父亲.儿子各多少岁.
差倍问题
儿子原来:(15+10)/(7-1-1)=5(岁)
儿子今年:5+15=20(岁)
父亲原来:5×7=35(岁)
父亲今年:35+15=50(岁)
22.小明和小芳围绕着一个池塘跑步,两人从同一点出发,同向而行.小明:280米/分;小芳:220/分.8分后,小明追上小芳.这个池塘的一周有多少米?
280*8-220*8=480
23.现有两列火车同时同方向齐头行进,行12秒后快车超过慢车.快车每秒行18米,慢车每秒行10米.如果这两列火车车尾相齐同时同方向行进,则9秒后快车超过慢车,求两列火车的车身长.
快车长:18×12-10×12=96(米)
慢车长:18×9-10×9=72(米)
24.一列火车通过440米的桥需要40秒,以同样的速度穿过310米的隧道需要30秒.这列火车的速度和车身长各是多少?
(1)火车的速度是:(440-310)÷(40-30)=13(米/秒)
(2)车身长是:13×30-310=80(米)
25.小英和小敏为了测量飞驶而过的火车速度和车身长,他们拿了两块跑表.小英用一块表记下了火车从她面前通过所花的时间是15秒;小敏用另一块表记下了从车头过第一根电线杆到车尾过第二根电线杆所花的时间是20秒.已知两电线杆之间的距离是100米.你能帮助小英和小敏算出火车的全长和时速吗?
(1)火车的时速是:100÷(20-15)×60×60=72000(米/小时)
(2)车身长是:20×15=300(米)
26.一人以每分钟120米的速度沿铁路边跑步.一列长288米的火车从对面开来,从他身边通过用了8秒钟,求列车的速度.
288÷8-120÷60=36-2=34(米/秒)
27.
小明上午8时骑自行车以每小时12千米的速度从A地到B地,小强上午8时40分骑自行车以每小时16千米的速度从B地到A地,两人在A、B两地的中点处相遇,A、B两地间的路程是多少千米?
两人在两地间的路程的中点相遇,但小明比小强多行了40分钟,如果两人同时出发,相遇时,小明行的路程就比小强少12÷60×40=8(千米),就是当小强出发时,小明已经行了8千米,从8时40分起两人到两人相遇,由于小明每小时比小强少行16-12=4(千米),说明两人相遇时间是8÷4=2(小时),那么,A、B两地间的路程是8+(12+16)×2=64(千米).
28.甲、乙两村相距3550米,小伟从甲村步行往乙村,出发5分钟后,小强骑自行车从乙村前往甲村,经过10分钟遇见小伟.小强骑车每分钟行的比小伟步行每分钟多160米,小伟每分钟走多少米?
如果小强每分钟少行160米,他行的速度就和小伟步行的速度相同,这样小强10分钟就少行了160×10=1600(米),小伟(5+10)分钟和小强10分钟一共行走的路程是3550-1600=1950(米),那么小伟每分钟走的路是1950÷(5+10+10)=78(米).
29.客车从东城和货车从西城同时开出,相向而行,客车每小时行44千米,货车每小时行36千米,客车到西城比货车到东城早2小时.两车开出后多少小时在途中相遇?
当客车到西城时,货车离东城还有2×36=72(千米),而货车每小时行的比客车少44-36=8(千米),客车行东西城间的路程用的时间是72÷8=9(小时),因此东西城相距44×9=396(千米),两车从出发到相遇用的时间是;396÷(44+36)=4.95(小时)
30.小红和小强同时从家里出发相向而行.小红每分走52米,小强每分走70米,二人在途中的A处相遇.若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在A处相遇.小红和小强两人的家相距多少米?
因为小红的速度不变,相遇地点不变,所以小红两次从出发到相遇的时间相同.也就是说,小强第二次比第一次少走4分.由
(70×4)÷(90-70)=14(分)
可知,小强第二次走了14分,推知第一次走了18分,两人的家相距
(52+70)×18=2196(米).
我花了30分钟呢,你是给孩子找的吧,祝你成功!
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1在从1998开始的100个连续自然数中,前50个自然数之和比后50个自然数之和小多少
- 2己知a,b是一个直角三角形两条直角边的长,且(a2+b2)(a2+b2+1)=12,求这个直角三角形的斜边长.
- 3已知,x的平方加y的平方等于6xy,且a大于b大于0,则a+b除以a-b等于
- 4已知x,y,z∈R,求证:x^2+y^2>=xy+x+y-1
- 5怎么证明 在同圆或等圆中,同弧或等弧所对的圆周角相等
- 6怎样测量曲轴的圆度、圆柱度、轴向间隙
- 7一个平行四边形,周长是26厘米,一条边长9厘米,相邻的另一条边长多少厘米、
- 8在一定温度下,向饱和NaOH溶液中投入一小块金属钠,充分反应后恢复到原来的温度,下列叙述合理的是 ( ) A.NaOH溶液浓度增大,并放出H2 B.溶液中NaOH的质量分数不变,有H2放出 C.溶液
- 9It will be three years before we meet again.
- 10经济政治计算题,求详解