当前位置: > 证明同周长的矩形中正方形面积最大...
题目
证明同周长的矩形中正方形面积最大

提问时间:2021-01-04

答案
周长为L(常数)的矩形中正方形面积最大.
证明:设矩形长为x,则宽为(L-2x)/2=(L/2-x)
面积y=x*(L/2-x)=-x^2+Lx/2,这个二次函数
在x=L/4时有最大值
∴矩形长L/4,宽为(L-2x)/2=(L/2-x)=L/4,
∴矩形中正方形面积最大
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.