当前位置: > 已知单位向量a,b的夹角为120°,当|2a+xb|(x∈R)取得最小值时x= _ ....
题目
已知单位向量
a
b
的夹角为120°,当|2
a
+x
b
|(x∈R)取得最小值时x= ___ .

提问时间:2021-01-04

答案
因为单位向量
a
b
的夹角为120°
所以|2
a
+x
b
|2
=4
a
2
+4x
a
b
+x2
b
2

=x2-2x+4=(x-1)2+3
∴当x=1时|2
a
+x
b
|2
取最小值,此时|2
a
+x
b
|(x∈R)取得最小值,
故答案为:1
|2
a
+x
b
|(x∈R)取得最小值,即其平方取得最小值,其平方后变成关于x的二次函数,利用二次函数的性质即可求解即可.

平面向量数量积的性质及其运算律.

本题考查向量的模,以及平面向量数量积的性质及其运算律,而求模常常计算其平方,属于基础题.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.