当前位置: > 三角形ABC的外接圆圆心为O,两条边上高的交点是H,求证:向量OH=向量OA+向量OB+向量OC....
题目
三角形ABC的外接圆圆心为O,两条边上高的交点是H,求证:向量OH=向量OA+向量OB+向量OC.

提问时间:2021-01-03

答案
先将向量OB和向量OC相加,得到向量OD(向量OD过BC中点)
然后证向量OD+向量OA=向量OH
即证AHOD为平行四边形
首先OD‖AH(都垂直BC)
现在只要证AH=OD=2OE(E为OD和BC交点,即平行四边形OCDB的对角线交点)就成立了
延长CO交圆O于F
由于CF是直径,所以 AF垂直AC,FB⊥BC
又BH垂直AC,AH垂直BC
∴AF‖BH,FB‖AH
∴AHBF是平行四边形
AH=FB=2OE
于是命题成立:向量OH=OA+OB+OC.
另外,
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.