当前位置: > f(x)=1-a(sinx+2sin^2x/2)求a=1时,f(x)的递减区域,和是否存在a,使得0<f(x)小于3对一切x∈[3π/2,2π]恒成立?...
题目
f(x)=1-a(sinx+2sin^2x/2)求a=1时,f(x)的递减区域,和是否存在a,使得0<f(x)小于3对一切x∈[3π/2,2π]恒成立?

提问时间:2021-01-03

答案
f(x)=1-[sinx+2sin²(x/2)]
=1-[sinx+2(1-cosx)/2]
=-(sinx-cosx)
=-√2sin(x-∏/4)
-∏/2≤x-∏/4≤∏/2
-∏/4≤x≤3∏/4 单调递增 单调递减的求法相同
f(x)=1-a[sinx+2sin²(x/2)]
=1-a(sinx-cosx+1)
=-a(sinx-cosx)+(1-a)
=-(√2)asin(x-∏/4)+(1-a)
x∈[3π/2,2π] ∴x-∏/4∈[5π/4,7π/4]
范围 自己求吧
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.