当前位置: > 证明以下数论题...
题目
证明以下数论题
若n≡0(mod2),A1,A2,.An和B1,B2,.Bn是模数n的任意两组完全剩余系,证明A1+B1,A2+B2,.An+Bn不是模数n的完全剩余系

提问时间:2021-01-03

答案
求和模2即可
反设A1+B1,A2+B2,.An+Bn是模n的完系,则求和模n=1+2+..+n=n(n+1)/2 (mod n) (等号代表同余)
又Ai和Bi分别是两组完系,所以他们的和模n等于两组完系的和=n(n+1) (mod n)
综合以上两条有n(n+1)/2=n(n+1) (mod n),即n(n+1)/2=0 (mod n) ,容易验证此式与n为偶数矛盾
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.