题目
如图,在平行四边形ABCD中,AD=4,∠B=105°,E是BC边的中点,∠BAE=30°,将△ABE沿AE翻折,点B落在点F处,连接FC,求四边形ABCF的周长.
提问时间:2021-01-03
答案
如图,作BG⊥AE,垂足为点G,
∴∠BGA=∠BGE=90°.
在平行四边形ABCD中,AD=BC=4,
∵E是BC边的中点,
∴BE=EC=
BC=
AD=2.
在△ABE中,∵∠BAE=30°,∠ABC=105°,∴∠BEG=45°.
由折叠的性质得△ABE≌△AFE.
∴AB=AF,BE=FE,∠BEF=90°.
在Rt△BGE中,BG=GE=
∴∠BGA=∠BGE=90°.
在平行四边形ABCD中,AD=BC=4,
∵E是BC边的中点,
∴BE=EC=
1 |
2 |
1 |
2 |
在△ABE中,∵∠BAE=30°,∠ABC=105°,∴∠BEG=45°.
由折叠的性质得△ABE≌△AFE.
∴AB=AF,BE=FE,∠BEF=90°.
在Rt△BGE中,BG=GE=