当前位置: > 微积分不等式证明...
题目
微积分不等式证明
设f(x)在[0,1]上连续,且∫f(x)dx=0,∫xf(x)dx=1(两个积分都是在0-1上的积分),求证存在一点X∈[0,1]使∣f(x)∣>4

提问时间:2021-01-03

答案
反证法
证明:
∵∫f(x)dx=0,∫xf(x)dx=1
∴∫[x-(1/2)]f(x)dx=∫xf(x)dx-(1/2)∫f(x)dx=1
设在[0,1]上处处有|f(x)|
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.