当前位置: > f(x)在(a,b)内连续且可导,f(a)=f(b)=0....
题目
f(x)在(a,b)内连续且可导,f(a)=f(b)=0.
求证:在a,b之间存在一点m,使得f'(m)=-f(m).

提问时间:2021-01-03

答案
构造函数g(x)=(e^x)*f(x)
于是g(a)=(e^a)*f(a)=0
g(b)=(e^b)*f(b)=0
所以g(a)=g(b)
对于g(x)用罗尔定理,存在m∈(a,b),使得
g'(m)=0
又g'(x)=(e^x)*(f(x)+f'(x))
所以存在m∈(a,b),使得
(e^m)*(f(m)+f'(m))=0
而e^m>0
所以f(m)+f'(m)=0
即存在m∈(a,b),使得f'(m)=-f(m).
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.