当前位置: > 设f(x)是闭区间[0,1]上连续函数,且f(x)=1/(1+x^2)+x^3∫f(t)dt...
题目
设f(x)是闭区间[0,1]上连续函数,且f(x)=1/(1+x^2)+x^3∫f(t)dt
∫f(t)dt是定积分,上限是1,下限是0,求定积分∫f(x)dx,上限,下限仍是1和0

提问时间:2021-01-03

答案
设定积分∫(上限1,下限0)f(x)dx=k则:f(x)=[1/(1+x^2)]+kx^3∫(上限1,下限0)f(x)dx=∫(上限1,下限0)1/(1+x^2) dx +k∫(上限1,下限0)x^3dxk=arctanx +k*(1/4)x^4 |(上限1,下限0)k=(pi/4)+(k/4)k=pi/3...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.