题目
将正方形ABCD沿对角线AC折起,当以A、B、C、D四点为顶点的三棱锥体积最大时,异面直线AD与BC所成的角为( )
A. 30°
B. 45°
C. 60°
D. 90°
A. 30°
B. 45°
C. 60°
D. 90°
提问时间:2021-01-03
答案
设O是正方形对角线AC、BD的交点,将正方形ABCD沿对角线AC折起,
可得当BO⊥平面ADC时,点B到平面ACD的距离等于BO,
而当BO与平面ADC不垂直时,点B到平面ACD的距离为d,且d<BO
由此可得当三棱锥B-ACD体积最大时,BO⊥平面ADC.
设B'是B折叠前的位置,连接B′B,
∵AD∥B′C,∴∠BCB′就是直线AD与BC所成角
设正方形ABCD的边长为a
∵BO⊥平面ADC,OB'⊂平面ACD
∴BO⊥OB',
∵BO'=BO=
AC=
a,
∴BB′=BC=B′C=a,得△BB′C是等边三角形,∠BCB′=60°
所以直线AD与BC所成角为60°
故选C.
可得当BO⊥平面ADC时,点B到平面ACD的距离等于BO,
而当BO与平面ADC不垂直时,点B到平面ACD的距离为d,且d<BO
由此可得当三棱锥B-ACD体积最大时,BO⊥平面ADC.
设B'是B折叠前的位置,连接B′B,
∵AD∥B′C,∴∠BCB′就是直线AD与BC所成角
设正方形ABCD的边长为a
∵BO⊥平面ADC,OB'⊂平面ACD
∴BO⊥OB',
∵BO'=BO=
1 |
2 |
| ||
2 |
∴BB′=BC=B′C=a,得△BB′C是等边三角形,∠BCB′=60°
所以直线AD与BC所成角为60°
故选C.
将正方形ABCD沿对角线AC折起,可得当三棱锥B-ACD体积最大时,BO⊥平面ADC.设B′是B折叠前的位置,连接B′B,可得
∠BCB′就是直线AD与BC所成角,算出△BB′C的各边长,得△BB′C是等边三角形,从而得出直线AD与BC所成角的大小.
∠BCB′就是直线AD与BC所成角,算出△BB′C的各边长,得△BB′C是等边三角形,从而得出直线AD与BC所成角的大小.
异面直线及其所成的角.
本题将正方形折叠,求所得锥体体积最大时异面直线所成的角,着重考查了线面垂直的性质和异面直线所成角求法等知识,属于中档题.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1(1)红星队要收割85公顷的小麦,已经收割了3天,平均每天收割74/3公顷,再收割多少就能完成任务?
- 2下面哪些发音是at组合的读音?sat mat rat bat cat pat fat hat pat
- 3一篇英文版的名人介绍(200字左右),
- 47进制数中各个数位上的数字只能是( )中的一个.
- 5比较下列算式中结果的大小
- 6已知直线ab都与平面β垂直 m与平面α平行 m‖b 有以下结论
- 7若物体在月球的重力只有在地球的六分之一,一个人能在地球举起质量100千克的物体,他在月球能举起物体质量是_.
- 8火车每秒通过十米的速度行驶,在火车行驶前方有座山崖,火车鸣笛2秒后司机听见了回声,火车鸣笛处离山崖多远
- 9已知二阶矩阵A的特征值为-1和2 求det(A-I)
- 10Shoot the rapid是啥意思?