当前位置: > 直角三角形ABC的内切圆圆O切斜边AB于D,求证S三角形ABC=AD*BD...
题目
直角三角形ABC的内切圆圆O切斜边AB于D,求证S三角形ABC=AD*BD
直角三角形ABC的内切圆圆O切斜边AB于D,求证S三角形ABC=AD乘BD

提问时间:2021-01-03

答案
便于表述,设AD=x,BD=y,内切圆半径为r
(x+r)^2+(y+r)^2=(x+y)^2
展开后,得:2xr+2yr+2r^2=2xy,约去2,两边加xy;
得到:xy+xr+yr+r^2=2xy,左边进行分解
得:(x+r)(y+r)=2xy,结合切线长定理,AC=x+r,BC=y+r
余下就能得证了.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.