题目
已知函数f(x)=4cos(wπ)sin(wx+π/4)(w>0)的最小正周期为π(1)求w的值(2)讨论f(x)在区间[0,π/2]
上的单调性
上的单调性
提问时间:2021-01-03
答案
已知函数f(x)=4cos(wπ)sin(wx+π/4)(w>0)的最小正周期为π(1)求w的值(2)讨论f(x)在区间[0,π/2]上的单调性
(1)解析:∵函数f(x)=4cos(wπ)sin(wx+π/4)(w>0)的最小正周期为π
∴T=π==>w=2π/π=2
f(x)=4cos(2π)sin(2x+π/4)=4sin(2x+π/4)
(2)解析:2kπ-π/2<=2x+π/4<=2kπ+π/2==>kπ-3π/8<=x<=kπ+π/8,f(x)单调增;
2kπ+π/2<=2x+π/4<=2kπ+3π/2==>kπ+π/8<=x<=kπ+5π/8,f(x)单调减;
∵区间[0,π/2]
∴在[0,π/8]上单调增;在[π/8,π/2]上单调减;
(1)解析:∵函数f(x)=4cos(wπ)sin(wx+π/4)(w>0)的最小正周期为π
∴T=π==>w=2π/π=2
f(x)=4cos(2π)sin(2x+π/4)=4sin(2x+π/4)
(2)解析:2kπ-π/2<=2x+π/4<=2kπ+π/2==>kπ-3π/8<=x<=kπ+π/8,f(x)单调增;
2kπ+π/2<=2x+π/4<=2kπ+3π/2==>kπ+π/8<=x<=kπ+5π/8,f(x)单调减;
∵区间[0,π/2]
∴在[0,π/8]上单调增;在[π/8,π/2]上单调减;
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1化简 cos(2tan-1x) tan-1x 指的是 tanx的反函数
- 2回忆老师上课的情景,用"娓娓动听,引人入胜,身临其境,入迷"等词语写一段话拜托各位了 3Q
- 32又5分之1x-x=10分之3
- 4英语翻译
- 5填叠词完成成语?
- 6已知△ABC中,AB=BC=1,∠ABC=90°,把一块有30°角的直角三角板DEF的直角顶点D放在AC的中点上,将△DEF
- 7The _____organic Olympic Games will be held in Beijing in 2008
- 8用18个1平方厘米的小正方形拼成一个大长方形,一共有几种不同的拼法,其中周长最长的长方形的周长是几厘米
- 9方位角与方向角有什么不同
- 10把五分之四米长的铁丝平均分成四段,每段长()米每段的长是全长的().已知4x=5y那么x和y成()比例.