当前位置: > 设函数f(x)=ln(x+1),g(x)=ax/(a+x)...
题目
设函数f(x)=ln(x+1),g(x)=ax/(a+x)
1,若a=2,证明当x≥0时f(x)≥g(x)恒成立
是否存在正实数a,使得f(x)小于等于g(x)在x属于[0,1]上恒成立 求证a的取值范围

提问时间:2021-01-03

答案
  令F(x)=ln(x+1)-ax/(a+x),F‘=4/[(X+1)*(X+2)*(X+2)]恒大于零,所以F为单调增函数.所以F(x)大于等于F(0)=0,若a=2,所以当x≥0时f(x)≥g(x)恒成立.
由题意知道F(x)=ln(x+1)-ax/(a+x)《0,x属于[0,1],因F(0)=0,所以只要保证F单调递减,也就是F的导数小于零恒成立.令F导数=x(x+2a-a*a)/[(X+1)*(X+a)*(X+a)]《0恒成立,因X是正数,只要保证x+2a-a*a《0恒成立即可,
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.