当前位置: > 求下列函数的单调区间值域①f(x)=(1/2)x²-2x+3②f(x)=log1/2(x²-x-6)...
题目
求下列函数的单调区间值域①f(x)=(1/2)x²-2x+3②f(x)=log1/2(x²-x-6)
注:x²-2x+3是指数1/2是底数(x²-x-6)是真数

提问时间:2021-01-02

答案
这两个都是复合函数
复合函数的单调区间是内外相同为增,不同为减
①外层是(1/2)^u,是单调减函数
u=x²-2x+3
的减区间是(-∞,1]增区间是(1,+∞)
∴整个函数的增区间是(-∞,1],减区间是(1,+∞)
x²-2x+3有最小值=2
(1/2)^2=1/4
指数函数恒>0
f(x)=(1/2)^(x²-2x+3)
的值域是(0,1/4]
②的定义域是
x²-x-6>0
(x-3)(x+2)>0
x>3或x
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.