当前位置: > 在底面是矩形的四棱锥P-ABCD中,PA⊥平面ABCD,PA=xAD,E是PD中点...
题目
在底面是矩形的四棱锥P-ABCD中,PA⊥平面ABCD,PA=xAD,E是PD中点
(1)求证:PB∥平面AEC
(2)求证:CD⊥AE
(3)是否存在正实数x使得平面PDC⊥平面AEC?若存在,求出x的值;所不存在,请说明理由

提问时间:2021-01-02

答案
1、连结BD、AC相交于O,连结OE,∵四边形ABCD是矩形,∴AC和BD互相平分,O是BD的中点,∵E是PD的中点,∴OE是△PBD的中位线,∴PB//OE,∵OE∈平面ACE,∴PB//平面ACE.2、∵PA⊥平面ABCD,CD∈平面ABCD,∴CD⊥PA,∵CD⊥AD,AD∩...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.