当前位置: > 设函数f(x)对任意xy∈R,都有f(x+y)=f(x)+f(y),且x>0,f(x)<0,f(1)=-2,Ⅰ证明F(X)是奇函数...
题目
设函数f(x)对任意xy∈R,都有f(x+y)=f(x)+f(y),且x>0,f(x)<0,f(1)=-2,Ⅰ证明F(X)是奇函数
Ⅱ证明F(x)在R上是减函数.

提问时间:2021-01-02

答案
(1)令x=y=0,代入f(x+y)=f(x)+f(y),f(0)=0,再令x=-y,代入f(x+y)=f(x)+f(y),得f(0)=f(x)+f(-x),所以是奇函数.
(2)因为x>0,f(x)<0,f(2)=f(1)+f(1)=-4,以此类推可得,所以x>0时,f(x)的值单调递减,又因为F(x)是奇函数,根据其性质,可知F(x)在R上是减函数.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.