当前位置: > 设A、B、C、E为同阶矩阵,E为单位矩阵,若ABC=E,则下列各式中总是成立的有?...
题目
设A、B、C、E为同阶矩阵,E为单位矩阵,若ABC=E,则下列各式中总是成立的有?
(a)BCA=E (b)ACB=E (c)BAC=E (d)CBA=E

提问时间:2021-01-02

答案
选择 (a)
因为 ABC=E 所以 A(BC)=E, 所以 A^(-1) = BC
所以 BCA = E.
故 (a) 正确.
满意请采纳^_^
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.