题目
已知a,b为异面直线,且a,b所成角为40°,直线c与a,b均异面,且所成角均为θ,若这样的c共有四条,则θ的范围为(70°,90°)
设平面α上两条直线m,n分别满足m∥a,n∥b
则m,n相交,且夹角为40°,
若直线c与a,b均异面,且所成角均为θ,
则直线c与m,n所成角均为θ,
当0°≤θ<20°时,不存在这样的直线c,
当θ=20°时,这样的c只有一条,
【我的问题是:θ=20°时,c怎么只有一条呢?只要和a,b异面,并且c`和c平行,不就有无数多条了么?(其它情况下同理)】
当20°<θ<70°时,这样的c有两条,
当θ=70°时,这样的c有三条,
当70°<θ<90°时,这样的c有四条,
当θ=90°时,这样的c有无数条,
(70°,90°)
设平面α上两条直线m,n分别满足m∥a,n∥b
则m,n相交,且夹角为40°,
若直线c与a,b均异面,且所成角均为θ,
则直线c与m,n所成角均为θ,
当0°≤θ<20°时,不存在这样的直线c,
当θ=20°时,这样的c只有一条,
【我的问题是:θ=20°时,c怎么只有一条呢?只要和a,b异面,并且c`和c平行,不就有无数多条了么?(其它情况下同理)】
当20°<θ<70°时,这样的c有两条,
当θ=70°时,这样的c有三条,
当70°<θ<90°时,这样的c有四条,
当θ=90°时,这样的c有无数条,
(70°,90°)
提问时间:2021-01-02
答案
20度就是直线m,n 夹角的角的平分线,是唯一的;
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1哲学上说一切事物都是在运动的,究竟什么东西是不变的?
- 2题目为I am not a child any more的英语作文
- 3一块长方体木料,长30厘米,宽21厘米,高15厘米,把它切成大小相等的小正方体,
- 4胰岛素有何作用,通过什么方式使葡萄糖转化为糖原
- 5丢失了你用英语怎么说
- 6磁流体发电是一项新兴技术,它可以把气体的内能直接转化为电能,如图是它的示意图,平行金属板A、B之间有一个很强的匀强磁场,磁感应强度为B,将一束等离子体(即高温下电离的气体
- 7英语翻译
- 8初二两道分式乘除计算题
- 9一辆自行车轮胎外直径50厘米,如果自行车每分钟转120周,这辆自行车每小时能行多少千米?
- 10如图所示,三个电阻R1、R2、R3的阻值相同,允许消耗的最大功率分别为10W、10W、4W,则此电路允许消耗的最大功率为( ) A.12W B.15W C.16W D.24W
热门考点
- 110g98%的浓硫酸加水稀释至100g后,用溶质质量分数为8%的氢氧化钠溶液恰好能完全中和.求: (1)需要此氢氧化钠溶液多少克? (2)反应后所得溶液中溶质的质量分数.
- 2x的平方减2X减4等于0 求两个根X1加x2 与X1乘x2的结果
- 3she was near the shore because the light was high up on the cliffs
- 40.1mol某有机物X在足量氧气中完全燃烧,生成4.48LCO2(标准状况),和5.4g水.推断它的分子式可能为_____?
- 5改比喻句,小鸟叫着
- 6(2/2)的加速度为0.1g.设微粒的带电量不变,空气阻力不变,取g=10m/s^2,求空中电场强度的大小...
- 720球,10球为红,10球为白,已取10个球,其中7个红球,3个白球,再取2次,两次都是白球的概率是多少?
- 8(1+2+3+4+5+6+7+8+9)×99+(1+2+3+4+5+6+7+8+9)×99如何简便运算
- 9与朱元思书代静为动描写奇山的句子是
- 1010^x=8,10^y=2.求10^x-y/2的值