当前位置: > 函数f(x)=sin2/3x+cos(2/3x-丌/6),对任意实数a.b,当f(a)-f(b)最大时,|a-b|的最小值是?...
题目
函数f(x)=sin2/3x+cos(2/3x-丌/6),对任意实数a.b,当f(a)-f(b)最大时,|a-b|的最小值是?

提问时间:2021-01-02

答案
f(x)=sin2/3x+cos(2/3x-丌/6)
=sin2/3x+√3/2*cos2/3x+1/2*sin2/3x
=3/2sin2/3x+√3/2*cos2/3x
=√3sin(2x/3+π/6)
T=3π
任意实数a.b,f(a)-f(b)最大时
|a-b|的最小值是T/2=3π/2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.