当前位置: > 证明:当x>1时,lnx大于2(x-1)/x+1...
题目
证明:当x>1时,lnx大于2(x-1)/x+1

提问时间:2021-01-02

答案
证明LnX>2(X-1)/(X+1)
因为
当X=1时 LnX=2(X-1)/(X+1)=0
设m=(LnX)'=1/x,n=[2(X-1)/(X+1)]'=4/(x+1)^2
当X>1时 m>0,n>0
所以LnX与2(X-1)/(X+1) 单调递增
m-n=(x-1)^2/4x(x+1)^2>0 (LnX斜率大于2(X-1)/(X+1)的斜率)
即证得:X大于1时 LnX>2(X-1)/(X+1)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.