当前位置: > 高等数学证数列收敛...
题目
高等数学证数列收敛
设a>0 ,任取x1>0 ,令xn+1=1/2(xn+a/xn) (其中n=1,2…… ).证明数列{xn} 收敛

提问时间:2021-01-02

答案
x0>0,所以Xn>0,所以
Xn+1=1/2(Xn+a/Xn)>=1/2(2√(Xn*a/Xn))=√a
即Xn有下界,且Xn^2>=a
又Xn+1-Xn=1/2(a/Xn-Xn)=1/2(a-Xn^2)/Xn<=0,即Xn是递减的
Xn有下界且递减,所以Xn收敛
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.