当前位置: > 高等数学证明数列收敛...
题目
高等数学证明数列收敛
f(x)是[1,﹢∞)上非负,单调减,an=∑(1,n) f(k) - ∫(1,n+1)f(x)dx (n=1,2.)
证明{an}是收敛数列.

提问时间:2021-01-02

答案

不难证明数列是单调增的,于是数列极限存在.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.